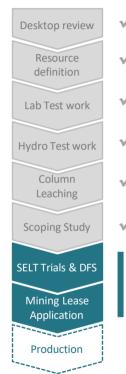


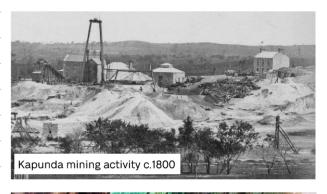
ISR AND ION EXCHANGE

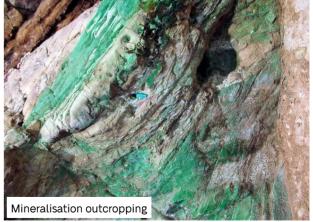
- IX is well-suited for recovery of low- to moderate-concentrations of value metals from complex processing liquors. Very-well matched to PLS processing / lixiviant return.
- ISR has a different cost structure to drill-blast-haul-mill-etc. Not reliant on bigger-is-better for payback.
- Ion exchange suits incremental / modular development
- Uranium 50% global supply
- Copper Taseko's Florence ISR
- Nickel KazNickel's Gornostayevskoye
- Future: Rare earths; other battery minerals; gold (paleochannel deposits)

Gornostayevskoye – Nickel ISR



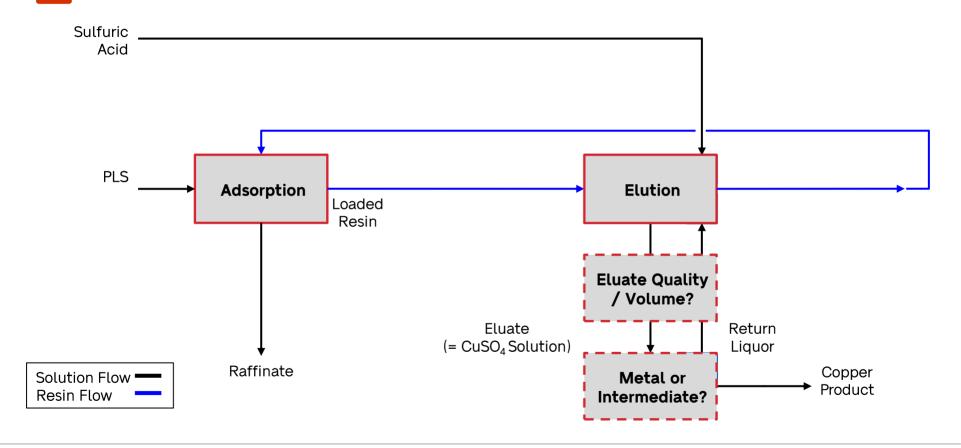
South Inkai - Uranium ISR IX


KAPUNDA PROJECT OVERVIEW



Interest	ECL has earned 50% project interest and is earning to 75%
Location	150 km north of Adelaide, South Australia
Infrastructure	Poximity to power, water and workforce
Resource	JORC resource 102MT @ 0.23% Cu, signif. gold upside potential
Geology	Siltstone, fracture fill mineralisation
Social	Built strong research based community support for project
ISR Characteristics	 Depth of mineralization (40-250m) Visible core is highly weathered and fractured, likely to be permeable Mineralisation sits under water table, right hydrogeological environment Copper already present in water monitoring bores (suggesting readily leachable)

Kapunda is a near term copper/gold ISR project ready for definitive feasibility and mining lease application



CLEAN TEQ METAL RECOVERY

CONCEPTUAL RECOVERY FLOWSHEET

PLS + COPPER EXTRACTION (ADSORPTION)

Feed liquor

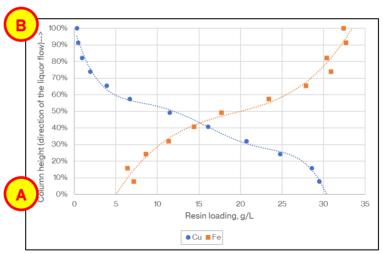
	Al	Co	Cu	Mn	Ni	Zn	Fe	ORP (Ag/AgCl)	рН
Feed, mg/L	82	6	1040	6	9	54	1810	341	2.76

- Preparatory batch testwork
- Fe²⁺ as major impurity, Cu-to-Fe ratio of 0.6
- pH and Fe²⁺ suppressed Cu loading; but Cu²⁺ can displace Fe²⁺
- Partial oxidation of Fe²⁺ to Fe³⁺ during contact
- Subsequent countercurrent extraction campaign to generate bulk loaded resin

CLEAN TEQ METAL RECOVERY

ADSORPTION - MINI-PILOT

Loaded resin shows upgrade and purification:


	Al	Co	Cu	Mn	Ni	Zn	Fe	рН
Resin, g/L	1.3	0.1	29.4	~0	0.3	1.4	7.6	2.7

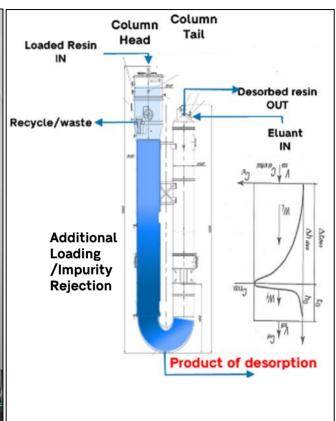
Feed Cu-to-Fe = 0.6

Loaded Resin Cu-to-Fe = 3.9

- Some oxidation of Fe²⁺ to Fe³⁺;
 some solids formation
- Trade-off exists on resin residence time/ solution contact time / Cu slip to raffinate
- Cu extraction prioritised

Column resin volume	2 L
Solution flowrate	~ 3 BV/h
Solution-to-resin flowrate	~ 33
Cu extraction	~100%
Iron rejection	>90%
Resin loaded	5.7L

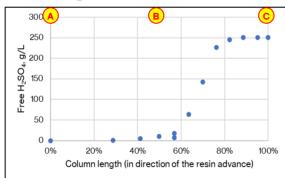
ELUTION – MINI-PILOT

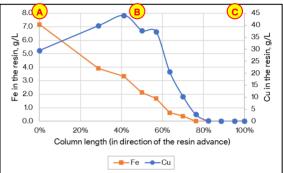

- Counter-current movement of solution and ion exchange resin in U-shaped column
- Further upgrade and purification of Cu

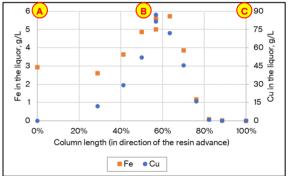
	Al	Cu	Mn	Zn	Fe
Feed, mg/L	82	1040	6	54	1810
Resin, g/L	1.3	29.4	~0	1.4	7.6
Eluate, g/L	<0.1	87.1	<0.1	<0.1	5.6
Deportment %	0	100	0	0	25

Stoichiometric reagent consumption

Resin processed	~5.7 L
Eluant H ₂ SO ₄ conc.	~250 g/L
Eluant-to-resin flowrate	0.61
Eluate generated	~1 L
Eluate-to-resin flowrate	0.34



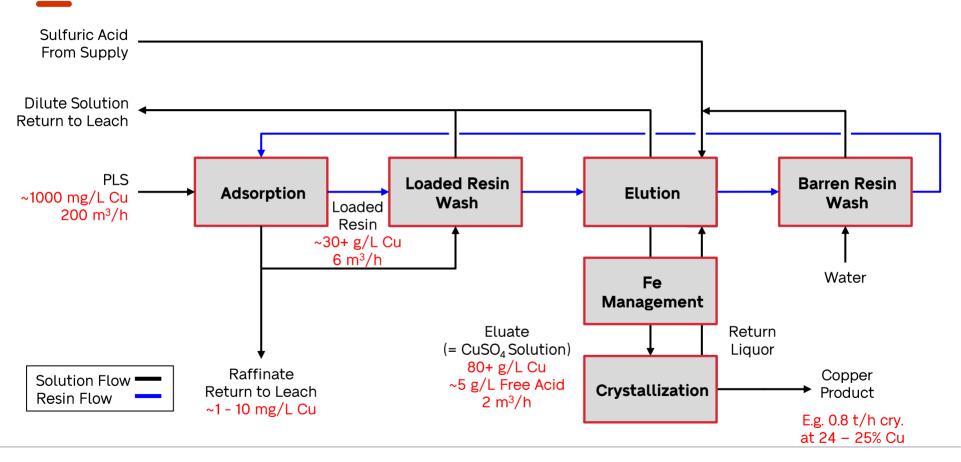



ELUTION - MINI-PILOT

- Fe²⁺ scrubbing (A → B)
- Scrubbing accomplished with 80-90 g/L Cu solution in the presence of ~5 g/L Fe and <10 g/L $\rm H_2SO_4$
- Cu loading increases 30 to 45 g/L (A →B)
- Fe loading decreases 7.6 to ~2 g/L (A→B)
- Remaining 2 g/L as
 Fe³⁺
- Residual Cu and Fe loading <0.05 g/L (at C)

CRYSTALLISATION - BENCHSCALE

- Eluate homogenised and batch processed
- Volume reduction to saturation point at 75°C, targeting controlled crystallisation of CuSO₄·5H₂O
- Under controlled crystallisation, a difference in Cu- and Fesulfate crystalisation leads to further Cu purificaiton
- Technical grade product spec. reached without any eluate pretreatment (e.g. neutralisation or hydrolysis)


	Al	Co	Cu	Mn	Ni	Zn	Fe	Cu/Fe
Feed, mg/L	82	6	1040	6	9	54	1810	0.6
Resin, g/L	1.3	0.1	29.4	~0	0.3	1.4	7.6	4
Eluate, g/L	<0.1	<0.1	87.1	<0.1	0.3	<0.1	5.6	16
CuSO₄·5H₂O crystals, mg/kg	<25	<10	249000	<4	26	9	1723	144
Technical grade spec CuSO ₄ ·5H ₂ O, mg/kg			247000	·			3000	82

COMMERCIAL-SCALE FLOWSHEET

CAPITAL COST ESTIMATE (CLASS 4)

- 3 trains * 200 m³/h PLS; centralised crystallisation
- 5,000 tpa Cu equivalent ~ 20kt crystal
- Process flow diagram developed to identify key process plant equipment items (from PLS through to raffinate + bagged product)
- Major equipment prices assessed based on material off-take estimates or factored from prior projects
- Parametric method for other components (e.g. factors from in-house database; Lang factors etc.)
- Resulting capital intensity ~\$7000/tpa Cu

Direct Costs	US\$ M
Purchased equipment cost	12.4
Installation	5.0
Civils	1.9
Utilities / services upgrade, tie-in	0.6
Total direct costs	19.9
Indirect Costs	US\$ M
Engineering and supervision	2.2
Construction common distributables	1.4
Construction common distributables	1.4
Construction common distributables Freight (inc. packaging)	1.4
Construction common distributables Freight (inc. packaging) Total indirect costs	1.4 0.6 4.2

CONCLUSIONS

- ISR + IX
 - Modular IX configuration for satellite or phased development
 - Further optimisation opportunities exist due to the PLS/Raffinate exchange between ISR and IX
- Impurity Management
 - Pre-treatment of PLS (e.g. pH, Eh adjustment) unnecessary, in this case
 - Solids formation (gypsum, metal hydroxides) manageable with moving bed ion exchange column
 - Given the scrubbing achieved in elution, Fe(III) is the main impurity to manage in eluate

Product Formation

- Moving-bed ion exchange provides a path from PLS to technical-grade product at Kapunda
- Concentrated, (partially) purified liquor creates product formation options inc. technical grade salt, metal precipitates, cathode.
- Driven by project location, market considerations (volume, payability), infrastructure, etc.

Jim Wall

Process Manager - Metal Recovery

M: +61 456 616 746

E: jwall@cleanteqwater.com

Clean TeQ Water

12/21 Howleys Road Notting Hill, VIC 3168, Australia

www.cleanteqwater.com